A Primer on Memory Persistency PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Primer on Memory Persistency PDF full book. Access full book title A Primer on Memory Persistency by Vaibhav Gogte. Download full books in PDF and EPUB format.

A Primer on Memory Persistency

A Primer on Memory Persistency PDF Author: Vaibhav Gogte
Publisher: Morgan & Claypool Publishers
ISBN: 1636393055
Category : Computers
Languages : en
Pages : 115

Get Book

Book Description
This book introduces readers to emerging persistent memory (PM) technologies that promise the performance of dynamic random-access memory (DRAM) with the durability of traditional storage media, such as hard disks and solid-state drives (SSDs). Persistent memories (PMs), such as Intel's Optane DC persistent memories, are commercially available today. Unlike traditional storage devices, PMs can be accessed over a byte-addressable load-store interface with access latency that is comparable to DRAM. Unfortunately, existing hardware and software systems are ill-equipped to fully avail the potential of these byte-addressable memory technologies as they have been designed to access traditional storage media over a block-based interface. Several mechanisms have been explored in the research literature over the past decade to design hardware and software systems that provide high-performance access to PMs. Because PMs are durable, they can retain data across failures, such as power failures and program crashes. Upon a failure, recovery mechanisms may inspect PM data, reconstruct state and resume program execution. Correct recovery of data requires that operations to the PM are properly ordered during normal program execution. Memory persistency models define the order in which memory operations are performed at the PM. Much like memory consistency models, memory persistency models may be relaxed to improve application performance. Several proposals have emerged recently to design memory persistency models for hardware and software systems and for high-level programming languages. These proposals differ in several key aspects; they relax PM ordering constraints, introduce varying programmability burden, and introduce differing granularity of failure atomicity for PM operations. This primer provides a detailed overview of the various classes of the memory persistency models, their implementations in hardware, programming languages and software systems proposed in the recent research literature, and the PM ordering techniques employed by modern processors.

A Primer on Memory Persistency

A Primer on Memory Persistency PDF Author: Vaibhav Gogte
Publisher: Morgan & Claypool Publishers
ISBN: 1636393055
Category : Computers
Languages : en
Pages : 115

View

Book Description
This book introduces readers to emerging persistent memory (PM) technologies that promise the performance of dynamic random-access memory (DRAM) with the durability of traditional storage media, such as hard disks and solid-state drives (SSDs). Persistent memories (PMs), such as Intel's Optane DC persistent memories, are commercially available today. Unlike traditional storage devices, PMs can be accessed over a byte-addressable load-store interface with access latency that is comparable to DRAM. Unfortunately, existing hardware and software systems are ill-equipped to fully avail the potential of these byte-addressable memory technologies as they have been designed to access traditional storage media over a block-based interface. Several mechanisms have been explored in the research literature over the past decade to design hardware and software systems that provide high-performance access to PMs. Because PMs are durable, they can retain data across failures, such as power failures and program crashes. Upon a failure, recovery mechanisms may inspect PM data, reconstruct state and resume program execution. Correct recovery of data requires that operations to the PM are properly ordered during normal program execution. Memory persistency models define the order in which memory operations are performed at the PM. Much like memory consistency models, memory persistency models may be relaxed to improve application performance. Several proposals have emerged recently to design memory persistency models for hardware and software systems and for high-level programming languages. These proposals differ in several key aspects; they relax PM ordering constraints, introduce varying programmability burden, and introduce differing granularity of failure atomicity for PM operations. This primer provides a detailed overview of the various classes of the memory persistency models, their implementations in hardware, programming languages and software systems proposed in the recent research literature, and the PM ordering techniques employed by modern processors.

A Primer on Memory Persistency

A Primer on Memory Persistency PDF Author: Gogte Vaibhav
Publisher: Springer
ISBN: 9783031791932
Category : Technology & Engineering
Languages : en
Pages : 95

View

Book Description
This book introduces readers to emerging persistent memory (PM) technologies that promise the performance of dynamic random-access memory (DRAM) with the durability of traditional storage media, such as hard disks and solid-state drives (SSDs). Persistent memories (PMs), such as Intel's Optane DC persistent memories, are commercially available today. Unlike traditional storage devices, PMs can be accessed over a byte-addressable load-store interface with access latency that is comparable to DRAM. Unfortunately, existing hardware and software systems are ill-equipped to fully avail the potential of these byte-addressable memory technologies as they have been designed to access traditional storage media over a block-based interface. Several mechanisms have been explored in the research literature over the past decade to design hardware and software systems that provide high-performance access to PMs.Because PMs are durable, they can retain data across failures, such as power failures and program crashes. Upon a failure, recovery mechanisms may inspect PM data, reconstruct state and resume program execution. Correct recovery of data requires that operations to the PM are properly ordered during normal program execution. Memory persistency models define the order in which memory operations are performed at the PM. Much like memory consistency models, memory persistency models may be relaxed to improve application performance. Several proposals have emerged recently to design memory persistency models for hardware and software systems and for high-level programming languages. These proposals differ in several key aspects; they relax PM ordering constraints, introduce varying programmability burden, and introduce differing granularity of failure atomicity for PM operations.This primer provides a detailed overview of the various classes of the memory persistency models, their implementations in hardware, programming languages and software systems proposed in the recent research literature, and the PM ordering techniques employed by modern processors.

A Primer on Memory Persistency

A Primer on Memory Persistency PDF Author: Gogte Vaibhav
Publisher: Springer Nature
ISBN: 303179205X
Category : Technology & Engineering
Languages : en
Pages : 95

View

Book Description
This book introduces readers to emerging persistent memory (PM) technologies that promise the performance of dynamic random-access memory (DRAM) with the durability of traditional storage media, such as hard disks and solid-state drives (SSDs). Persistent memories (PMs), such as Intel's Optane DC persistent memories, are commercially available today. Unlike traditional storage devices, PMs can be accessed over a byte-addressable load-store interface with access latency that is comparable to DRAM. Unfortunately, existing hardware and software systems are ill-equipped to fully avail the potential of these byte-addressable memory technologies as they have been designed to access traditional storage media over a block-based interface. Several mechanisms have been explored in the research literature over the past decade to design hardware and software systems that provide high-performance access to PMs.Because PMs are durable, they can retain data across failures, such as power failures and program crashes. Upon a failure, recovery mechanisms may inspect PM data, reconstruct state and resume program execution. Correct recovery of data requires that operations to the PM are properly ordered during normal program execution. Memory persistency models define the order in which memory operations are performed at the PM. Much like memory consistency models, memory persistency models may be relaxed to improve application performance. Several proposals have emerged recently to design memory persistency models for hardware and software systems and for high-level programming languages. These proposals differ in several key aspects; they relax PM ordering constraints, introduce varying programmability burden, and introduce differing granularity of failure atomicity for PM operations.This primer provides a detailed overview of the various classes of the memory persistency models, their implementations in hardware, programming languages and software systems proposed in the recent research literature, and the PM ordering techniques employed by modern processors.

A Primer on Hardware Prefetching

A Primer on Hardware Prefetching PDF Author: Babak Falsafi
Publisher: Springer Nature
ISBN: 3031017439
Category : Technology & Engineering
Languages : en
Pages : 54

View

Book Description
Since the 1970’s, microprocessor-based digital platforms have been riding Moore’s law, allowing for doubling of density for the same area roughly every two years. However, whereas microprocessor fabrication has focused on increasing instruction execution rate, memory fabrication technologies have focused primarily on an increase in capacity with negligible increase in speed. This divergent trend in performance between the processors and memory has led to a phenomenon referred to as the “Memory Wall.” To overcome the memory wall, designers have resorted to a hierarchy of cache memory levels, which rely on the principal of memory access locality to reduce the observed memory access time and the performance gap between processors and memory. Unfortunately, important workload classes exhibit adverse memory access patterns that baffle the simple policies built into modern cache hierarchies to move instructions and data across cache levels. As such, processors often spend much time idling upon a demand fetch of memory blocks that miss in higher cache levels. Prefetching—predicting future memory accesses and issuing requests for the corresponding memory blocks in advance of explicit accesses—is an effective approach to hide memory access latency. There have been a myriad of proposed prefetching techniques, and nearly every modern processor includes some hardware prefetching mechanisms targeting simple and regular memory access patterns. This primer offers an overview of the various classes of hardware prefetchers for instructions and data proposed in the research literature, and presents examples of techniques incorporated into modern microprocessors.

Programming Persistent Memory

Programming Persistent Memory PDF Author: Steve Scargall
Publisher: Apress
ISBN: 9781484249314
Category : Computers
Languages : en
Pages : 438

View

Book Description
Beginning and experienced programmers will use this comprehensive guide to persistent memory programming. You will understand how persistent memory brings together several new software/hardware requirements, and offers great promise for better performance and faster application startup times—a huge leap forward in byte-addressable capacity compared with current DRAM offerings. This revolutionary new technology gives applications significant performance and capacity improvements over existing technologies. It requires a new way of thinking and developing, which makes this highly disruptive to the IT/computing industry. The full spectrum of industry sectors that will benefit from this technology include, but are not limited to, in-memory and traditional databases, AI, analytics, HPC, virtualization, and big data. Programming Persistent Memory describes the technology and why it is exciting the industry. It covers the operating system and hardware requirements as well as how to create development environments using emulated or real persistent memory hardware. The book explains fundamental concepts; provides an introduction to persistent memory programming APIs for C, C++, JavaScript, and other languages; discusses RMDA with persistent memory; reviews security features; and presents many examples. Source code and examples that you can run on your own systems are included. What You’ll Learn Understand what persistent memory is, what it does, and the value it brings to the industry Become familiar with the operating system and hardware requirements to use persistent memory Know the fundamentals of persistent memory programming: why it is different from current programming methods, and what developers need to keep in mind when programming for persistence Look at persistent memory application development by example using the Persistent Memory Development Kit (PMDK) Design and optimize data structures for persistent memory Study how real-world applications are modified to leverage persistent memory Utilize the tools available for persistent memory programming, application performance profiling, and debugging Who This Book Is For C, C++, Java, and Python developers, but will also be useful to software, cloud, and hardware architects across a broad spectrum of sectors, including cloud service providers, independent software vendors, high performance compute, artificial intelligence, data analytics, big data, etc.

A Primer on Hardware Prefetching

A Primer on Hardware Prefetching PDF Author: Babak Falsafi
Publisher: Morgan & Claypool Publishers
ISBN: 1608459535
Category : Computers
Languages : en
Pages : 69

View

Book Description
Since the 1970’s, microprocessor-based digital platforms have been riding Moore’s law, allowing for doubling of density for the same area roughly every two years. However, whereas microprocessor fabrication has focused on increasing instruction execution rate, memory fabrication technologies have focused primarily on an increase in capacity with negligible increase in speed. This divergent trend in performance between the processors and memory has led to a phenomenon referred to as the “Memory Wall.” To overcome the memory wall, designers have resorted to a hierarchy of cache memory levels, which rely on the principal of memory access locality to reduce the observed memory access time and the performance gap between processors and memory. Unfortunately, important workload classes exhibit adverse memory access patterns that baffle the simple policies built into modern cache hierarchies to move instructions and data across cache levels. As such, processors often spend much time idling upon a demand fetch of memory blocks that miss in higher cache levels. Prefetching—predicting future memory accesses and issuing requests for the corresponding memory blocks in advance of explicit accesses—is an effective approach to hide memory access latency. There have been a myriad of proposed prefetching techniques, and nearly every modern processor includes some hardware prefetching mechanisms targeting simple and regular memory access patterns. This primer offers an overview of the various classes of hardware prefetchers for instructions and data proposed in the research literature, and presents examples of techniques incorporated into modern microprocessors.

Persistent Activity in the Brain – Functions and Origin

Persistent Activity in the Brain – Functions and Origin PDF Author: Shintaro Funahashi
Publisher: Frontiers Media SA
ISBN: 2889746003
Category : Science
Languages : en
Pages : 173

View

Book Description


C Primer Plus

C Primer Plus PDF Author: Stephen Prata
Publisher: Addison-Wesley
ISBN: 0133432386
Category : Computers
Languages : en
Pages : 1080

View

Book Description
C Primer Plus is a carefully tested, well-crafted, and complete tutorial on a subject core to programmers and developers. This computer science classic teaches principles of programming, including structured code and top-down design. Author and educator Stephen Prata has created an introduction to C that is instructive, clear, and insightful. Fundamental programming concepts are explained along with details of the C language. Many short, practical examples illustrate just one or two concepts at a time, encouraging readers to master new topics by immediately putting them to use. Review questions and programming exercises at the end of each chapter bring out the most critical pieces of information and help readers understand and digest the most difficult concepts. A friendly and easy-to-use self-study guide, this book is appropriate for serious students of programming, as well as developers proficient in other languages with a desire to better understand the fundamentals of this core language. The sixth edition of this book has been updated and expanded to cover the latest developments in C as well as to take a detailed look at the new C11 standard. In C Primer Plus you’ll find depth, breadth, and a variety of teaching techniques and tools to enhance your learning: Complete, integrated discussion of both C language fundamentals and additional features Clear guidance about when and why to use different parts of the language Hands-on learning with concise and simple examples that develop your understanding of a concept or two at a time Hundreds of practical sample programs Review questions and programming exercises at the end of each chapter to test your understanding Coverage of generic C to give you the greatest flexibility

A Primer on the Complexities of Traumatic Memory of Childhood Sexual Abuse

A Primer on the Complexities of Traumatic Memory of Childhood Sexual Abuse PDF Author: Fay Honey Knopp
Publisher:
ISBN:
Category : Psychology
Languages : en
Pages : 318

View

Book Description


Computational Psychiatry

Computational Psychiatry PDF Author: Peggy Series
Publisher: MIT Press
ISBN: 0262360713
Category : Psychology
Languages : en
Pages : 342

View

Book Description
The first introductory textbook in the emerging, fast-developing field of computational psychiatry. Computational psychiatry applies computational modeling and theoretical approaches to psychiatric questions, focusing on building mathematical models of neural or cognitive phenomena relevant to psychiatric diseases. It is a young and rapidly growing field, drawing on concepts from psychiatry, psychology, computer science, neuroscience, electrical and chemical engineering, mathematics, and physics. This book, accessible to nonspecialists, offers the first introductory textbook in computational psychiatry.