**Author**: Loukas Grafakos

**Publisher:** Springer

**ISBN:** 1493912305

**Category : **Mathematics

**Languages : **en

**Pages : **624

**Get Book**

**Book Description**
This text is aimed at graduate students in mathematics and to interested researchers who wish to acquire an in depth understanding of Euclidean Harmonic analysis. The text covers modern topics and techniques in function spaces, atomic decompositions, singular integrals of nonconvolution type and the boundedness and convergence of Fourier series and integrals. The exposition and style are designed to stimulate further study and promote research. Historical information and references are included at the end of each chapter. This third edition includes a new chapter entitled "Multilinear Harmonic Analysis" which focuses on topics related to multilinear operators and their applications. Sections 1.1 and 1.2 are also new in this edition. Numerous corrections have been made to the text from the previous editions and several improvements have been incorporated, such as the adoption of clear and elegant statements. A few more exercises have been added with relevant hints when necessary.

**Author**: Loukas Grafakos

**Publisher:** Springer

**ISBN:** 1493912305

**Category : **Mathematics

**Languages : **en

**Pages : **624

**View**

**Book Description**
This text is aimed at graduate students in mathematics and to interested researchers who wish to acquire an in depth understanding of Euclidean Harmonic analysis. The text covers modern topics and techniques in function spaces, atomic decompositions, singular integrals of nonconvolution type and the boundedness and convergence of Fourier series and integrals. The exposition and style are designed to stimulate further study and promote research. Historical information and references are included at the end of each chapter. This third edition includes a new chapter entitled "Multilinear Harmonic Analysis" which focuses on topics related to multilinear operators and their applications. Sections 1.1 and 1.2 are also new in this edition. Numerous corrections have been made to the text from the previous editions and several improvements have been incorporated, such as the adoption of clear and elegant statements. A few more exercises have been added with relevant hints when necessary.

**Author**: Loukas Grafakos

**Publisher:** Prentice Hall

**ISBN:**
**Category : **Mathematics

**Languages : **en

**Pages : **931

**View**

**Book Description**
An ideal refresher or introduction to contemporary Fourier Analysis, this book starts from the beginning and assumes no specific background. Readers gain a solid foundation in basic concepts and rigorous mathematics through detailed, user-friendly explanations and worked-out examples, acquire deeper understanding by working through a variety of exercises, and broaden their applied perspective by reading about recent developments and advances in the subject. Features over 550 exercises with hints (ranging from simple calculations to challenging problems), illustrations, and a detailed proof of the Carleson-Hunt theorem on almost everywhere convergence of Fourier series and integrals ofL p functions --one of the most difficult and celebrated theorems in Fourier Analysis. A complete Appendix contains a variety of miscellaneous formulae.L p Spaces and Interpolation. Maximal Functions, Fourier transforms, and Distributions. Fourier Analysis on the Torus. Singular Integrals of Convolution Type. Littlewood-Paley Theory and Multipliers. Smoothness and Function Spaces.BMO and Carleson Measures. Singular Integrals of Nonconvolution Type. Weighted Inequalities. Boundedness and Convergence of Fourier Integrals. For mathematicians interested in harmonic analysis.

**Author**: Loukas Grafakos

**Publisher:** Springer Science & Business Media

**ISBN:** 0387094342

**Category : **Mathematics

**Languages : **en

**Pages : **507

**View**

**Book Description**
The great response to the publication of the book Classical and Modern Fourier Analysishasbeenverygratifying.IamdelightedthatSpringerhasofferedtopublish the second edition of this book in two volumes: Classical Fourier Analysis, 2nd Edition, and Modern Fourier Analysis, 2nd Edition. These volumes are mainly addressed to graduate students who wish to study Fourier analysis. This second volume is intended to serve as a text for a seco- semester course in the subject. It is designed to be a continuation of the rst v- ume. Chapters 1–5 in the rst volume contain Lebesgue spaces, Lorentz spaces and interpolation, maximal functions, Fourier transforms and distributions, an introd- tion to Fourier analysis on the n-torus, singular integrals of convolution type, and Littlewood–Paley theory. Armed with the knowledgeof this material, in this volume,the reader encounters more advanced topics in Fourier analysis whose development has led to important theorems. These theorems are proved in great detail and their proofs are organized to present the ow of ideas. The exercises at the end of each section enrich the material of the corresponding section and provide an opportunity to develop ad- tional intuition and deeper comprehension. The historical notes in each chapter are intended to provide an account of past research but also to suggest directions for further investigation. The auxiliary results referred to the appendix can be located in the rst volume.

**Author**: Loukas Grafakos

**Publisher:** Springer Science & Business Media

**ISBN:** 0387094326

**Category : **Mathematics

**Languages : **en

**Pages : **492

**View**

**Book Description**
The primary goal of this text is to present the theoretical foundation of the field of Fourier analysis. This book is mainly addressed to graduate students in mathematics and is designed to serve for a three-course sequence on the subject. The only prerequisite for understanding the text is satisfactory completion of a course in measure theory, Lebesgue integration, and complex variables. This book is intended to present the selected topics in some depth and stimulate further study. Although the emphasis falls on real variable methods in Euclidean spaces, a chapter is devoted to the fundamentals of analysis on the torus. This material is included for historical reasons, as the genesis of Fourier analysis can be found in trigonometric expansions of periodic functions in several variables. While the 1st edition was published as a single volume, the new edition will contain 120 pp of new material, with an additional chapter on time-frequency analysis and other modern topics. As a result, the book is now being published in 2 separate volumes, the first volume containing the classical topics (Lp Spaces, Littlewood-Paley Theory, Smoothness, etc...), the second volume containing the modern topics (weighted inequalities, wavelets, atomic decomposition, etc...). From a review of the first edition: “Grafakos’s book is very user-friendly with numerous examples illustrating the definitions and ideas. It is more suitable for readers who want to get a feel for current research. The treatment is thoroughly modern with free use of operators and functional analysis. Morever, unlike many authors, Grafakos has clearly spent a great deal of time preparing the exercises.” - Ken Ross, MAA Online

**Author**: Loukas Grafakos

**Publisher:**
**ISBN:** 9787519226145

**Category : **Fourier analysis

**Languages : **en

**Pages : **624

**View**

**Book Description**

**Author**: Loukas Grafakos

**Publisher:** Springer

**ISBN:** 9780387094342

**Category : **Mathematics

**Languages : **en

**Pages : **507

**View**

**Book Description**
The great response to the publication of the book Classical and Modern Fourier Analysishasbeenverygratifying.IamdelightedthatSpringerhasofferedtopublish the second edition of this book in two volumes: Classical Fourier Analysis, 2nd Edition, and Modern Fourier Analysis, 2nd Edition. These volumes are mainly addressed to graduate students who wish to study Fourier analysis. This second volume is intended to serve as a text for a seco- semester course in the subject. It is designed to be a continuation of the rst v- ume. Chapters 1–5 in the rst volume contain Lebesgue spaces, Lorentz spaces and interpolation, maximal functions, Fourier transforms and distributions, an introd- tion to Fourier analysis on the n-torus, singular integrals of convolution type, and Littlewood–Paley theory. Armed with the knowledgeof this material, in this volume,the reader encounters more advanced topics in Fourier analysis whose development has led to important theorems. These theorems are proved in great detail and their proofs are organized to present the ow of ideas. The exercises at the end of each section enrich the material of the corresponding section and provide an opportunity to develop ad- tional intuition and deeper comprehension. The historical notes in each chapter are intended to provide an account of past research but also to suggest directions for further investigation. The auxiliary results referred to the appendix can be located in the rst volume.

**Author**:

**Publisher:** Elsevier

**ISBN:** 9780080871578

**Category : **Mathematics

**Languages : **en

**Pages : **391

**View**

**Book Description**
Real Variable Methods in Fourier Analysis

**Author**: Pertti Mattila

**Publisher:** Cambridge University Press

**ISBN:** 1107107350

**Category : **Mathematics

**Languages : **en

**Pages : **455

**View**

**Book Description**
Modern text examining the interplay between measure theory and Fourier analysis.

**Author**: Mark A. Pinsky

**Publisher:** American Mathematical Soc.

**ISBN:** 082184797X

**Category : **Mathematics

**Languages : **en

**Pages : **376

**View**

**Book Description**
This book provides a concrete introduction to a number of topics in harmonic analysis, accessible at the early graduate level or, in some cases, at an upper undergraduate level. Necessary prerequisites to using the text are rudiments of the Lebesgue measure and integration on the real line. It begins with a thorough treatment of Fourier series on the circle and their applications to approximation theory, probability, and plane geometry (the isoperimetric theorem). Frequently, more than one proof is offered for a given theorem to illustrate the multiplicity of approaches. The second chapter treats the Fourier transform on Euclidean spaces, especially the author's results in the three-dimensional piecewise smooth case, which is distinct from the classical Gibbs-Wilbraham phenomenon of one-dimensional Fourier analysis. The Poisson summation formula treated in Chapter 3 provides an elegant connection between Fourier series on the circle and Fourier transforms on the real line, culminating in Landau's asymptotic formulas for lattice points on a large sphere. Much of modern harmonic analysis is concerned with the behavior of various linear operators on the Lebesgue spaces $L^p(\mathbb{R}^n)$. Chapter 4 gives a gentle introduction to these results, using the Riesz-Thorin theorem and the Marcinkiewicz interpolation formula. One of the long-time users of Fourier analysis is probability theory. In Chapter 5 the central limit theorem, iterated log theorem, and Berry-Esseen theorems are developed using the suitable Fourier-analytic tools. The final chapter furnishes a gentle introduction to wavelet theory, depending only on the $L_2$ theory of the Fourier transform (the Plancherel theorem). The basic notions of scale and location parameters demonstrate the flexibility of the wavelet approach to harmonic analysis. The text contains numerous examples and more than 200 exercises, each located in close proximity to the related theoretical material.

**Author**: Loukas Grafakos

**Publisher:** Springer

**ISBN:** 9780387094342

**Category : **Mathematics

**Languages : **en

**Pages : **507

**View**

**Book Description**
The great response to the publication of the book Classical and Modern Fourier Analysishasbeenverygratifying.IamdelightedthatSpringerhasofferedtopublish the second edition of this book in two volumes: Classical Fourier Analysis, 2nd Edition, and Modern Fourier Analysis, 2nd Edition. These volumes are mainly addressed to graduate students who wish to study Fourier analysis. This second volume is intended to serve as a text for a seco- semester course in the subject. It is designed to be a continuation of the rst v- ume. Chapters 1–5 in the rst volume contain Lebesgue spaces, Lorentz spaces and interpolation, maximal functions, Fourier transforms and distributions, an introd- tion to Fourier analysis on the n-torus, singular integrals of convolution type, and Littlewood–Paley theory. Armed with the knowledgeof this material, in this volume,the reader encounters more advanced topics in Fourier analysis whose development has led to important theorems. These theorems are proved in great detail and their proofs are organized to present the ow of ideas. The exercises at the end of each section enrich the material of the corresponding section and provide an opportunity to develop ad- tional intuition and deeper comprehension. The historical notes in each chapter are intended to provide an account of past research but also to suggest directions for further investigation. The auxiliary results referred to the appendix can be located in the rst volume.