Author: Maria Dolores Ugarte
Publisher: CRC Press
ISBN: 158488892X
Category : Mathematics
Languages : en
Pages : 726
Get Book
Book Description
Designed for an intermediate undergraduate course, Probability and Statistics with R shows students how to solve various statistical problems using both parametric and nonparametric techniques via the open source software R. It provides numerous real-world examples, carefully explained proofs, end-of-chapter problems, and illuminating graphs
Author: Maria Dolores Ugarte
Publisher: CRC Press
ISBN: 158488892X
Category : Mathematics
Languages : en
Pages : 726
View
Book Description
Designed for an intermediate undergraduate course, Probability and Statistics with R shows students how to solve various statistical problems using both parametric and nonparametric techniques via the open source software R. It provides numerous real-world examples, carefully explained proofs, end-of-chapter problems, and illuminating graphs
Author: Ronald Meester
Publisher: Cambridge University Press
ISBN: 1108692478
Category : Social Science
Languages : en
Pages :
View
Book Description
This book addresses the role of statistics and probability in the evaluation of forensic evidence, including both theoretical issues and applications in legal contexts. It discusses what evidence is and how it can be quantified, how it should be understood, and how it is applied (and, sometimes, misapplied). After laying out their philosophical position, the authors begin with a detailed study of the likelihood ratio. Following this grounding, they discuss applications of the likelihood ratio to forensic questions, in the abstract and in concrete cases. The analysis of DNA evidence in particular is treated in great detail. Later chapters concern Bayesian networks, frequentist approaches to evidence, the use of belief functions, and the thorny subject of database searches and familial searching. Finally, the authors provide commentary on various recommendation reports for forensic science. Written to be accessible to a wide audience of applied mathematicians, forensic scientists, and scientifically-oriented legal scholars, this book is a must-read for all those interested in the mathematical and philosophical foundations of evidence and belief.
Author: Jean Walrand
Publisher: Springer Nature
ISBN: 3030499952
Category : Applied mathematics
Languages : en
Pages : 380
View
Book Description
This revised textbook motivates and illustrates the techniques of applied probability by applications in electrical engineering and computer science (EECS). The author presents information processing and communication systems that use algorithms based on probabilistic models and techniques, including web searches, digital links, speech recognition, GPS, route planning, recommendation systems, classification, and estimation. He then explains how these applications work and, along the way, provides the readers with the understanding of the key concepts and methods of applied probability. Python labs enable the readers to experiment and consolidate their understanding. The book includes homework, solutions, and Jupyter notebooks. This edition includes new topics such as Boosting, Multi-armed bandits, statistical tests, social networks, queuing networks, and neural networks. The companion website now has many examples of Python demos and also Python labs used in Berkeley. Showcases techniques of applied probability with applications in EE and CS; Presents all topics with concrete applications so students see the relevance of the theory; Illustrates methods with Jupyter notebooks that use widgets to enable the users to modify parameters.
Author: John Haigh
Publisher: Springer Science & Business Media
ISBN: 144715343X
Category : Mathematics
Languages : en
Pages : 287
View
Book Description
The purpose of this book is to provide a sound introduction to the study of real-world phenomena that possess random variation. It describes how to set up and analyse models of real-life phenomena that involve elements of chance. Motivation comes from everyday experiences of probability, such as that of a dice or cards, the idea of fairness in games of chance, and the random ways in which, say, birthdays are shared or particular events arise. Applications include branching processes, random walks, Markov chains, queues, renewal theory, and Brownian motion. This textbook contains many worked examples and several chapters have been updated and expanded for the second edition. Some mathematical knowledge is assumed. The reader should have the ability to work with unions, intersections and complements of sets; a good facility with calculus, including integration, sequences and series; and appreciation of the logical development of an argument. Probability Models is designed to aid students studying probability as part of an undergraduate course on mathematics or mathematics and statistics.
Author: Enders A. Robinson
Publisher: Springer Science & Business Media
ISBN: 9400953860
Category : Mathematics
Languages : en
Pages : 420
View
Book Description
Probability theory and its applications represent a discipline of fun damental importance to nearly all people working in the high-tech nology world that surrounds us. There is increasing awareness that we should ask not "Is it so?" but rather "What is the probability that it is so?" As a result, most colleges and universities require a course in mathematical probability to be given as part of the undergraduate training of all scientists, engineers, and mathematicians. This book is a text for a first course in the mathematical theory of probability for undergraduate students who have the prerequisite of at least two, and better three, semesters of calculus. In particular, the student must have a good working knowledge of power series expan sions and integration. Moreover, it would be helpful if the student has had some previous exposure to elementary probability theory, either in an elementary statistics course or a finite mathematics course in high school or college. If these prerequisites are met, then a good part of the material in this book can be covered in a semester (IS-week) course that meets three hours a week.
Author: Samuel Goldberg
Publisher: Courier Corporation
ISBN: 0486318540
Category : Mathematics
Languages : en
Pages : 352
View
Book Description
Excellent basic text covers set theory, probability theory for finite sample spaces, binomial theorem, probability distributions, means, standard deviations, probability function of binomial distribution, more. Includes 360 problems with answers for half.
Author: Siegfried Graf
Publisher: Springer
ISBN: 3540455779
Category : Mathematics
Languages : en
Pages : 230
View
Book Description
Due to the rapidly increasing need for methods of data compression, quantization has become a flourishing field in signal and image processing and information theory. The same techniques are also used in statistics (cluster analysis), pattern recognition, and operations research (optimal location of service centers). The book gives the first mathematically rigorous account of the fundamental theory underlying these applications. The emphasis is on the asymptotics of quantization errors for absolutely continuous and special classes of singular probabilities (surface measures, self-similar measures) presenting some new results for the first time. Written for researchers and graduate students in probability theory the monograph is of potential interest to all people working in the disciplines mentioned above.
Author: Jane M. Horgan
Publisher: John Wiley & Sons
ISBN: 1119536987
Category : Mathematics
Languages : en
Pages : 496
View
Book Description
Provides a comprehensive introduction to probability with an emphasis on computing-related applications This self-contained new and extended edition outlines a first course in probability applied to computer-related disciplines. As in the first edition, experimentation and simulation are favoured over mathematical proofs. The freely down-loadable statistical programming language R is used throughout the text, not only as a tool for calculation and data analysis, but also to illustrate concepts of probability and to simulate distributions. The examples in Probability with R: An Introduction with Computer Science Applications, Second Edition cover a wide range of computer science applications, including: testing program performance; measuring response time and CPU time; estimating the reliability of components and systems; evaluating algorithms and queuing systems. Chapters cover: The R language; summarizing statistical data; graphical displays; the fundamentals of probability; reliability; discrete and continuous distributions; and more. This second edition includes: improved R code throughout the text, as well as new procedures, packages and interfaces; updated and additional examples, exercises and projects covering recent developments of computing; an introduction to bivariate discrete distributions together with the R functions used to handle large matrices of conditional probabilities, which are often needed in machine translation; an introduction to linear regression with particular emphasis on its application to machine learning using testing and training data; a new section on spam filtering using Bayes theorem to develop the filters; an extended range of Poisson applications such as network failures, website hits, virus attacks and accessing the cloud; use of new allocation functions in R to deal with hash table collision, server overload and the general allocation problem. The book is supplemented with a Wiley Book Companion Site featuring data and solutions to exercises within the book. Primarily addressed to students of computer science and related areas, Probability with R: An Introduction with Computer Science Applications, Second Edition is also an excellent text for students of engineering and the general sciences. Computing professionals who need to understand the relevance of probability in their areas of practice will find it useful.
Author: Robert M. Becker
Publisher:
ISBN:
Category : Distribution (Probability theory)
Languages : en
Pages : 101
View
Book Description
Author: Charles Miller Grinstead
Publisher: American Mathematical Soc.
ISBN: 9780821807491
Category : Mathematics
Languages : en
Pages : 510
View
Book Description
This text is designed for an introductory probability course at the university level for undergraduates in mathematics, the physical and social sciences, engineering, and computer science. It presents a thorough treatment of probability ideas and techniques necessary for a firm understanding of the subject.